3.2.87 \(\int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\) [187]

Optimal. Leaf size=199 \[ -\frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {4 a^2 (5 A+4 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 (5 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d} \]

[Out]

2/15*a^2*(5*A+7*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*B*sec(d*x+c)^(3/2)*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d+4/5*
a^2*(5*A+4*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-4/5*a^2*(5*A+4*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^2*(2*A+B)*(cos(1/2*d*x+1/2*c)^
2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {4103, 4082, 3872, 3856, 2720, 3853, 2719} \begin {gather*} \frac {2 a^2 (5 A+7 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{15 d}+\frac {4 a^2 (5 A+4 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(-4*a^2*(5*A + 4*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(2*A + B)*
Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a^2*(5*A + 4*B)*Sqrt[Sec[c + d*x]]
*Sin[c + d*x])/(5*d) + (2*a^2*(5*A + 7*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(15*d) + (2*B*Sec[c + d*x]^(3/2)*(a
^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx &=\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {2}{5} \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x)) \left (\frac {1}{2} a (5 A+B)+\frac {1}{2} a (5 A+7 B) \sec (c+d x)\right ) \, dx\\ &=\frac {2 a^2 (5 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {4}{15} \int \sqrt {\sec (c+d x)} \left (\frac {5}{2} a^2 (2 A+B)+\frac {3}{2} a^2 (5 A+4 B) \sec (c+d x)\right ) \, dx\\ &=\frac {2 a^2 (5 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{3} \left (2 a^2 (2 A+B)\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (2 a^2 (5 A+4 B)\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {4 a^2 (5 A+4 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 (5 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d}-\frac {1}{5} \left (2 a^2 (5 A+4 B)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (2 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {4 a^2 (5 A+4 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 (5 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d}-\frac {1}{5} \left (2 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {4 a^2 (5 A+4 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 (5 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.32, size = 321, normalized size = 1.61 \begin {gather*} \frac {a^2 e^{-i c} \left (-1+e^{2 i c}\right ) \csc (c) \left (5 A+10 B-30 A e^{i (c+d x)}-18 B e^{i (c+d x)}-60 A e^{3 i (c+d x)}-54 B e^{3 i (c+d x)}-5 A e^{4 i (c+d x)}-10 B e^{4 i (c+d x)}-30 A e^{5 i (c+d x)}-24 B e^{5 i (c+d x)}-10 i (2 A+B) \left (1+e^{2 i (c+d x)}\right )^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 (5 A+4 B) e^{i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^2 (A+B \sec (c+d x))}{60 d \left (1+e^{2 i (c+d x)}\right )^2 (B+A \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(a^2*(-1 + E^((2*I)*c))*Csc[c]*(5*A + 10*B - 30*A*E^(I*(c + d*x)) - 18*B*E^(I*(c + d*x)) - 60*A*E^((3*I)*(c +
d*x)) - 54*B*E^((3*I)*(c + d*x)) - 5*A*E^((4*I)*(c + d*x)) - 10*B*E^((4*I)*(c + d*x)) - 30*A*E^((5*I)*(c + d*x
)) - 24*B*E^((5*I)*(c + d*x)) - (10*I)*(2*A + B)*(1 + E^((2*I)*(c + d*x)))^2*Sqrt[Cos[c + d*x]]*EllipticF[(c +
 d*x)/2, 2] + 2*(5*A + 4*B)*E^(I*(c + d*x))*(1 + E^((2*I)*(c + d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -
E^((2*I)*(c + d*x))])*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/(60*d*E^(I*c)*(1 + E^((2*I
)*(c + d*x)))^2*(B + A*Cos[c + d*x])*Sec[c + d*x]^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(715\) vs. \(2(227)=454\).
time = 3.67, size = 716, normalized size = 3.60

method result size
default \(-\frac {a^{2} \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+8 \left (\frac {A}{4}+\frac {B}{2}\right ) \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {2 B \left (24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{5 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {8 \left (\frac {A}{2}+\frac {B}{4}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(716\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)+8*(1/4*A+1/2*B)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1
/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2/5*B/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1
/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)
^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin
(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+8*(1/2*A+1/4*B)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(2*sin(1/2*d*x+1/2*c)^
2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*
d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.42, size = 239, normalized size = 1.20 \begin {gather*} -\frac {2 \, {\left (5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (6 \, {\left (5 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(2*A + B)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*
I*sqrt(2)*(2*A + B)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)
*(5*A + 4*B)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c
))) - 3*I*sqrt(2)*(5*A + 4*B)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c))) - (6*(5*A + 4*B)*a^2*cos(d*x + c)^2 + 5*(A + 2*B)*a^2*cos(d*x + c) + 3*B*a^2)*sin(d*x + c
)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3061 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________